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MATHEMATICAL   PROGRAMMING   METHODS 

OF  PATTERN CLASSIFICATION 

By 

Richard C. Grinold 

Division of Engine«ring and Applied Physic• 

Harvard University    Cambridge, Massachusetts 

ABSTRACT 

This paper studies four mathematical programming methods 

which are useful in pattern classification.   Two of the models are for 

linearly separable problems, while the others work without separability. 
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INTRODUCTION 

This report is designed to supplement "On Pattern Class if ication- 

Introduction and Survey, " [7], by describing several mathematical pro- 

gramming approaches to the classification problem. We'll assume that 

the reader is familiar with the Ho and Agrawala paper (at least sections 

I, II, and IV) and draw on the motivation, notation, and definitions used 

there. 

Four mathematical programming models are described in detail, 

and two more are mentioned briefly.    Others exist,  and are referenced 

in the publications cited here.   The four models were selected for their 

computational and conceptual properties. 

Before describing the contents of the paper, we'll expand upon and 

change some of the notation adopted in [7]. 

Definitions: 

IT 0    T (i).     Instead of x (i)    and x (j)   , the training samples from 

classes one and zero will be denoted by m component 

row vectors A. and A.. 

k k (ii).    For k = 0,1; A    is the n.  x m matrix whose rows are A., 

i s 1, 2,  ,... , n, 

(iii).   h, i,e,q, and f are vectors of ones.    There dimensions 

are given below. 

h~n. xl;    X~n0xl;   e~mxl;   q^n.'n.xl and 

f ~ n x 1, where n ■ n.+n0. 

♦ 
Y.  C. Ho and A.  K. Agrawala, Technical Report No.  557, Division of 
Engineering and Applied Physics, Harvard University March (1968), also 
published in IEEE Trans,  on Auto. Cont.  Vol.  13,  No.  6, December 1968 
and Proceedings of the IEEE, Vol.  56,  No.  12, December 1968. 



2- 

(iv).      A linear decision function is an (m+1) x 1 vector w = 

Using these definitions we note that 

h   A 
A = 

-i-A' 

Suppose the patterns are described by an m component row vector x, 

then the decision function defined by w is 

f (x)  a X  + XU = (1,X)W. 

(v).       A linear decision function w is a separator if 

Aw> 0 

Problems are specified by their range of attributes. 

The ranges are defined below. 

(vi).      S1 a {x| P(x| H1) > 0) 

S0a {x|P(x| H0)> 0) 

(vii).     The operator C will denote convex closure.    Thus C(S ) 

is the closed convex hull of S . 

(viii).   The problem is separable if C(S0) and CCS1) are disjoint. 

If they intersect the problem is nonseparable. 
0 1 (ix).      The problem is decidable if S   and S   are disjoint. 

u 
(x).        We shall define C(A ) as the convex hull of the rows of 

Ak, k = 0,1. 

Thus 

C(A0) s {b|b « zA0, zA a l, z * 0} 

CCA1) « {b|b ■ yA1, yh a 1, y * o) 



Five sections and an appendix follow.   Sections one and two 

describe models used in the separable and nonseparable cases.    The 

third section remarks on the model's flexibility in terms of accommodat- 

ing new data and use in judging new features.   Section four considers the 

model's generalization properties, while the last section describes an 

application.   The appendix is a brief introduction to linear and quadratic 

programming. 

Of the four models, two have been described in the published 

literature.    One of the unpublished models is due to Canon and Cullum [3], 

the other is the author's responsibility [6]. 



I.   THE SEPARABLE CASE 

Charnet [4] and MangaaarUn (9| indepandantly propoaed a linear 

programming model for aeparating diajolnt polyhedrona.   Their diatinct 

approachea illuatrate the duality principle of linear programming.   Charnea 

aaka if the aeta C(A0) and CfA1) are diajoint. while MangaaarUn look» 

directly for a aeparating hyperplane. 

By definition, the C(Ak) will interaect if and only if the ayatem (I) 

haa a feaaible aolution. 

«A1 - yA0 - 0. yh > I. ai • lt y 1 0. s i 0 (1) 

We can discover a aolution of (1) by adding artifical variable« to the ayatem 

and minimising the infeaaibility.   Thia givea ua a linear program. 

Minimise (r + •)e (2) 

Subj. to 

sA0 - yA1 + rl - al ■ 0 

ai »1 

yh «1 

a £ 0, y S 0, r i p/ a » 0 

Thia problem haa m + 2 equality conatrainta with n + 2m nonnegative 

variables.   The value, (r + a)e, is nonnegative aince r and a are non- 

negative.   Finally, we can eaaily construct a firat baaic feaaible aolution 

of (2). 

The alternate approach involvea the deciaion function directly. 

Suppose the m vector u and acalars {y, 6) satisfy the following conditions: 
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6 - Y   > 0 (3) 

-A1»! - hy ^ 0 

A0u + 16 * 0 

then w m (i ■    , u) is a separator.   A aolution of (3) can be diacovered 

by solving (4). 

Maximise 6 - Y (4) 

Subj. to 

-Alu - HY « 0 

+A0u + X6 * 0 

-• i u i a 

Problem (4) has n inequality constraints, two free variables (Y, 6), and 

m variables with upper and lower bounds. The bounds-rule out infinite 

solutions.   Evidently, (Y. 6.U) ■ (0,0,0) is a feasible solution of (4). 

Appealing to the results in the appendix we can state that problem 

(4) is the dual of problem (2), and the duality theorem applies.   This 

guarantees the existence of optimal solutions (i,y, r,i) and (Y.6,G) auch 

that: 

(r -f s)e « 6 . -y > 0. 

There are two possibilities.    If 6 - Y > 0, then (3L±J , G) is a 

separator.    If o(f + s) = 0, then (B,y) solves (1), and the convex hulls 

intersect.   These facts are summarised below. 

Theorem; (5) 

(i).        Problems (2) and (4) have optimal solutions with equal, 

nonnegative values. 
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(ii).     If the optimal value is zero, the patterns are not 

linearly separable, 

(iii).     If the optimal value is positive, then >3 = (J-^—, IT) 

defines a separator which maximizes 

MintAjw] i s 1,2 n] 

Subj. to 

-ISw. f 1,     for   j & 1,2.... ,m 

Statements (i), (ii), and the first part of (iii) are established above.   The 

final statement can be established by contradiction. 

The linear programs will be solved using some variant of Dantzig's, 

[2], simplex method.   This is a rapidly convergent combinatorial procedure, 

while the adaption algorithms, see [7] Table I, are gradient descent tech- 

niques which converge slowly.   If the patterns are not separable, slow and 

nonconvergence can be confused.   See [9]. pg. 451, for a more detailed 

comment along this line.   The adaption algorithms do have the advantage 

of simplicity, but this is largely offset by the wide availability of profes- 

sionally written linear programming codes.   Either (2) or (4) can be solved, 

but the simplex algorithm is more efficient with fewer nontrivial constraints. 

It Is not very sensitive to the number of variables.   Since m -f 2 « n it is 

reasonable to solve (2). 

Canon and Cullum [3] have proposed a quadratic programming method 

for the separable case.   Although it is generally more difficult to solve 

quadratic programs, the authors take advantage of the problem's special 

structure and claim their method is competitive with the linear programming 

model. 



For each i and j, i e 1,2, ..., n., j ■ 1,2, .., n0; we can define 

a difference vector 

DJ^SAJ-A.     for    k«l,2 n^. 

The vectors D. are the rows of the n.n0 x m matrix D.   Recall 

C(D) c fufu s yD, yg » 1. y ^ O).   It is eaey to eetablish that C(A0) and 

C(A ) will be separable if and only if the origin is not contained in C(D). 

This suggests a test for separability;   find the vector in C(D) with 

minimum norm.   The problem can be written in two ways: 

Minimise ^y (6) 

Subj. to 

yD - ul s 0 

yg «1 

yt 0 

Minimise X—* (7) 

Subj. to 

yg «1 

y» 0 

The following facts about (6) and (7) should be clear:  they are equivalent, 

the objectives are convex and quadratic, they have optimal solutions with 

nonnegative values, and the sets are separable if and only if the optimal 

value is positive. 

It is well known that any point in C(D) can be expressed as a convex 

combination of at most m + 1 rows of D.   This fact is used to reduce the 

problem's size.   The algorithm solves a modified version of (6), restricting 



attention to a aubfet o£ m + I rowt.   A test sees if the restricted 

solution is optimal with ail rows considered.    If so, (6) is solved.    If 

not, a new row is added, an old row dropped, and the algorithm proceeds. 

finding an optimal solution in a finite number of steps.   The optimal solu- 

tion of (6) defines the linear decision surface. 

Suppose (y.u) solves (6). u ^ 0, and 

V »Mln fAJu'l i =1,2, ...nj} 

6 »Maxf/G'l j =1,2, ..,n0) 

then ('■- , G) is a separator. If G = 0, no separator exists. This is 

demonstrated in the appendix using the Kuhn-Tucker theorem. Canon 

and Cullum do the same by showing problem (6) is equivalent to: 

Max [Min {uz| ueC(D)}] (8) 

Subj. to 

z'lz S l 

II.   NONSEPARABLE 

One approach to the nonseparable case was taken in [6].   A descrip- 

tion will require two definitions. 

n   A 
ZAi — be the average of the rows of A. 
i=l 

(xii). For any decision function w, let the quality of w be defined 

as 

Min [AjWJ i B 1,2,  ..., n] 
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If w is a separator, the quality is positive.    If w is not a separator, 

the negative of the quality (a nonnegative number) measures the largest 

error the decision surface makes.   To obtain a decision surface of highest 

quality we solve 

Maximize f Mln[A.w| 1 « 1,2, ...., n]} 

Subj. to aw = 1 

The constraint is a normalization. 

This problem can be transformed into a linear program by intro- 

ducing a new variable P and requiring P £ A.w for i = 1, 2,..., n. The 

new problem and its dual are given below. 

Maximize p (9) 

Subj. to 

Aw - fp i 0 

aw si 

Minimize y (10) 

Subj. to 

yA - ya = 0 

yf =1        / 

y* 0 

Problem (10) has m + 2   equality constraints, n nonegative variables, 

and one free variable. 

The main result of [6] is; 

Theorem (11) 

(i).     Problems (9) and (10) have optimal solutions with equal 

objective values iff and a M.   When a ■ 0( (9) is infeasible. 
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(ii).     If (w, p) solves (9) and p > 0,  then w defines a separator 

of maximum quality, 

(iii).    If (w, p) solves (9) and p ^ 0,  then the patterns are not 

separable and w defines a decision surface that minimizes 

the maximum error. 

This is equivalent to (5) in the separable case.    In addition,  a meaningful 

decision surface is generated if the patterns are not separable. 

Smith, [13], has another approach.    Note that Aw> 0 has a solution 

iff Aw S f has a solution.   In this spirit, we can solve 

Minimize f v 

Subj. to r 

Aw + Iv 5 f 

v5 0      ' 

The v.'s measure the size of any error in the classification of the ith 

sample.   Thus if A.w ^ 1, there is no error and v. = 0.   If A.w < ], v. is 

positive.   There is some difficulty if 0< A.w< 1.   In this case the pattern 

is correctly classified, but an error is counted.   This behavior is observed 

in optimal solutions. 

The dual, (12), is a linear program with m + 1 equality constraints 

and n nonnegative variables with upper bounds.   It is relatively easy to 

solve, [5], 

Maximize yf (12) 

Subj. to 

yA ■ 0 

0 « y S f' 
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ThiB model suggests several conceptually interesting but computa- 

tionally difficult variations.    For instance, we could minimize the sum of 

squared errors.   This leads to a quadratic program: 

Minimize v Iv 

Subj, to 

Aw + Iv S f 

v* 0 

Another variant maximizes the number of correctly classified samples: 

n 

Maximize y^ 6(A.w) 

i=l 

Subj. to -1 S Wj S 1      i = 0,1, 2, ... , m 

ö(*) is the step function; one if its argument is positive, zero otherwise. 

This problem can be reformulated as an integer program, [12] pp. 

194-8. 

Another method of treating the nonseparable case was proposed by 

Mangasarian, [10],   The approach is similar to Arkadev and Braveman [l], 

i. e, a piecewise linear decision surface is created which decides correctly 

about all the data.   Mangasarian uses mathematical programming to con- 

struct the decision surface.    We will not examine that algorithm in detail, 

but we do comment on its generalisation properties in section 4. 

III.    FLEXIBILITY 

This section examines the ability of the different models, (2), (o), 

and (12) to handle new data and yield information useful in selecting new 
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features.    Models (2),(10), and (12) can accept new data points and find 

a new decision surface easily.    In each case, adding a new point is 

equivalent to introducing a new activity (column) into the linear program. 

Model (6) has a similar property.   For example,  suppose a new 

point in class one, A     ., is observed.    This adds n. new rows to the 

matrix D.   If 

An +1 u  ^ Min [An u'f i = 1, 2, ...., n^ 

no change is needed, the old decision surface is still optimal.    If the 

inequality does not hold, we continue to apply the Canon-Cullum alf  .ithm 

until a new optimal solution is obtained. 

Introducing a new feature in (2). (10), or (12), ' adds a new constraint 

(row) to the linear program.    If several new features are being considered, 

we can devise a heuristic rule for chosing among them.    Try the current 

optimal solution for each new constraint.   Select the constraint which is 

the furtherest from being satisfied.    If the optimal solution satisfies all 

the new constraints, it is still optimal.    This selects the feature which 

maximizes the rates of improvement of the solution.    Then a new optimal 

solution can be obtained using the dual simplex method. 

' There doesn't seem to be any way that new feature can be accommodated 
by model (6). 
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IV.    GENERALIZATION 

The generalization properties of the models are examined in this 

section.    In particular, we are interested in the decision surfaces gener- 

ated as the number of sample points n becomes large.   For each n the 

models produce a decision surface defined by a nonzero m + 1 vector. 

Without loss of generality we can uniformly bound these vectors.   Thus, 

there will be subsequences which converge.    We shall study the properties 

of the limiting decision surface. 

For example,  assume C(S ) and C(S  ) are disjoint with one set 

compact, and consider model (2).    Let (X  , u ) be the normalized optimal 

decision surface   for the n sample problem   and let (X,u) be a limiting 

surface: i.e. (X  ,u )->(X,u) on some subsequence.   The following theorem 

asserts (X,u) is optimal for the limiting problem. 

Theorem: 

With probability one (wp. 1) there exists a p > 0 such that (X, u, p) 

solve: 

Maximize p 

Subj. to 

X+xu-pSO xe CCS1) 

-X-xu-p^O xe C(S0) 

-e - u S e 

Proof: 

There exists a hyperplane which strictly separates C(S ) and C(S ). 

Therefore the problem has an optimal solution with positive value. 
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Suppose (X,u) and some p > 0 are not optimal.    A contradiction 

can be established by appealing to the the facts that (X,u) is (2) feasible 

for all n, and that (X,u) is the limit of a subsequence of optimal solutions. 

Three comments are in order.   First it is obvious that similar 

results hold for models (6), (10), and (12).   Secondly, if compactness 

is dropped a weaker,  p ^ 0,  statement is true.    Finally,  if separability 

doesn't hold, then (wp, 1) all models will indicate this for some large 

value of n. 

Assuming decidability we could obtain a like result using the 

piecewise approach, [10].    Additional regularity assumptions are needed 

to allow a piecewise linear function defined by a finite number of hyper- 

planes.    Without decidability, the piecewise approach would struggle in 

vain to produce a perfect decision function. 

Model (10) will work in the separable case, but it has questionable 

generalization properties.    It is very sensitive to the tails of the distribu- 

tions.   The decision surface minimizes the maximum error, therefore it 

will react to the worst points or prehaps to a faulty observation.   Things 

can get worse. 
k i   k 

Let a   be the finite means of the distributions,  P(x|H ) for k = 0,1. 

Then the row average of A will converge (wp. 1) to 

/pfH1) a1 - P(H0) a0' 

[pfH1) - P(H0) 

The following is an example of what can go wrong.   Suppose P(H ) > P(H ), 

and the sets described below have a nonvoid intersection: 
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L ={d| d =va, V^ 13 

Z ={d| d =(.*).  -be C(S0)} 

then the limiting optimal solution is giv n by w = ( 1 A ,  0) i. e. 
P(H1) - P(HU) 

the decision function is 

f(x) = j-i *    > 0    for all x 
P(H ) - P(HU) 

The fact that f is correct more than not offers little consolation.    Note 

that this phenomenon will occur if S0 = S1 = Rm, and P(H0) ^ PCH1):   e. g. 

multivariate normal. 

The generalization properties of (12) seem to be the best.    It is a 

reasonable conjecture that the limiting decision surfaces of (12) are 

optimal solutions to the following: 

Minimize F(w) 

Subj. to 

-IS Wi* !     i = 0,1,2, ...,m 

F(w) = PiH1) J      (-\-ux)P(x| Hl) dx + P(H0) J      (X-hix)P(x| H0) 

x0 x1 

is the expected error distance.   It is also reasonable to assume that the 

limiting decision surfaces of the integer program mentioned in section 

two will minimize the probability of error among all linear decision func- 

tions.   A brief attempt was made to prove these conjectures,  but the proof 

is elusive. 
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V.    EXAMPLE 

Models (10) and (12) were employed to design decision functions 

using data from a NASA biomedical experiment.   Two types of electro- 

encephalograms (brainwaves, EEG) were recorded.    In one instance the 

subject was watching a strobe light.   In the other case the light was not 

visible.   The object is to distinguish the two cases using the EEG data. 

Of a possible one hundred features K.  Prahbu selected five, using 

a distance-dispers ion technique and prepared the data for the linear pro- 

gramming models.    The parameters were n. - 165,  n, = 155, m = 5,  n = 320, 

and the problems were solved on an IBM 360-65 using the mathematical 

programming package, MPS 360, [11].   Results are tabulated below. 

Model (10)    Solution Time 0. 09 min. 

Errors Number Percentage 

Type I 25 16.6 

Type II 21 12.7 

Total 46 14.4 

Model (12)   Solution Time 0. 92 min. 

Errors Number Percentage 

Type I 18 11.6 

Type II 24 14.5 

Total 42 13.1 
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Notice the performance of model (12) is slightly better although 

the solution time is longer. Both problems had unique optimal solu- 

tions and 31 of the points were incorrectly classified by both techniques. 



APPENDIX 

Linear and Quadratic Programming 

Several results from mathematical programming have been used 

in this report.    This appendix attempts to motivate and explain these 

results while citing more substantial references. 

A linear program is an optimization problem 

m 

I 
Subj. to 

Min   y x.c. 
) J 

2Xjaji =bi i =1.2.  ••." 
j«l 

x. 5 0        j = 1, 2, .. ,m 

Our vector notation is 

Min xc 

Subj,  to 

xA =b 

x        0 

c is m x 1, A m x n,  and b 1 x n.    We shall call this problem the primal. 

There is an associated dual problem: 

Max    by 

Subj.  to 

Ay ^ c 
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Linear programs appear in many formt: maximization or minimization, 

equalitief or inequalities, nonnegative or unrestricted variables.   Any 

problem can be transformed into the same form as our primal, which 

allows us to know its dual.    The dual can be found directly using the 

diagrams on pp. 126-7 of [2], 

An efficient algorithm known as the simplex method, has been 

devised to solve linear programs.    In a finite number of steps it finds 

a feasible solution (if one exists), then again in a finite number of steps 

it determines an optimal or an unbounded solution.   An optimal dual solu- 

tion is supplied as a by product of the calculations. 

The principle theoretical result in linear programming relates 

primal and dual. 

Theorem:   [2] pg. 129 

If both primal and dual have feasible solutions, they have optimal 

solutions (x, y) such that 

xc * by 

We shall discuss quadratic programming in the context of problem (6). 

Mm —-— 
2 

Subj. tb 

yD - ul = 0 

yg =1 

y       o 

A central result in the study of these problems is the Kuhn-Tucker theorem, 

[8].    In our case it states: 
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Theorem: 

(y, u) if optimal for (6) if and only if there exist (x, z. X) such that 

gX -f Dx •!■ z s o 

u'  - x s 0 

y$ 0 

zS 0 

yg a 1 

yD - ul = 0 

yz = 0 

Suppose u ^ 0 i« optimal in (6), then ulu' > 0.    Juggling the above 

equations we can easily establish that 

and 

X = -ulu < 0 

Du * gfalu') > 0. 

. 
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